
filemagic Documentation
Release 1.6

Aaron Iles

February 04, 2014

Contents

1 Features 3

2 Table of Contents 5
2.1 Guide to using filemagic . 5
2.2 Command Line Invocation . 7
2.3 The filemagic API . 7

3 Issues 9

i

ii

filemagic Documentation, Release 1.6

filemagic provides a Python API for libmagic, the library behind Unix file command. It enables the Python developer
to easilty test for file types from the extensive identification library that is shipped with libmagic.

“Any sufficiently advanced technology is indistinguishable from magic.”

—Arthur C. Clark, 1961

Contents 1

filemagic Documentation, Release 1.6

2 Contents

CHAPTER 1

Features

• Simple, Python API.

• Identifies named files or strings.

• Return a textual description, mime type or mime encoding.

• Provide custom magic files to customize file detection.

• Support for both Python2 and Python3.

• Support for both CPython and PyPy.

3

filemagic Documentation, Release 1.6

4 Chapter 1. Features

CHAPTER 2

Table of Contents

2.1 Guide to using filemagic

2.1.1 Background

libmagic is the library that commonly supports the file command on Unix system, other than Max OSX which has
its own implementation. The library handles the loading of database files that describe the magic numbers used to
identify various file types, as well as the associated mime types. The library also handles character set detections.

2.1.2 Installation

Before installing filemagic, the libmagic library will need to be availabile. To test this is the check for the presence of
the file command and/or the libmagic man page.

$ which file
$ man libmagic

On Mac OSX, Apple has implemented their own version of the file command. However, libmagic can be installed
using homebrew

$ brew install libmagic

After brew finished installing, the test for the libmagic man page should pass.

Now that the presence of libmagic has been confirmed, use pip to install filemagic.

$ pip install filemagic

The magic module should now be availabe from the Python shell.

>>> import magic

The next section will describe how to use the magic.Magic class to identify file types.

2.1.3 Usage

The magic module uses ctypes to wrap the primitives from libmagic in the more user friendly magic.Magic class.
This class handles initialization, loading databases and the release of resources.

5

http://www.darwinsys.com/file/
https://github.com/mxcl/homebrew
http://pypi.python.org/pypi/pip
http://docs.python.org/dev/library/ctypes.html

filemagic Documentation, Release 1.6

>>> import magic

To ensure that resources are correctly released by magic.Magic, it’s necessary to either explicitly call close()
on instances, or use with statement.

>>> with magic.Magic() as m:
... pass
...

magic.Magic supports context managers which ensures resources are correctly released at the end of the with
statements irrespective of any exceptions.

To identify a file from it’s filename, use the id_filename() method.

>>> with magic.Magic() as m:
... m.id_filename(’setup.py’)
...
’Python script, ASCII text executable’

Similarily to identify a file from a string that has already been read, use the id_buffer() method.

>>> with magic.Magic() as m:
... m.id_buffer(’#!/usr/bin/python\n’)
...
’Python script, ASCII text executable’

To identify with mime type, rather than a textual description, pass the MAGIC_MIME_TYPE flag when creating the
magic.Magic instance.

>>> with magic.Magic(flags=magic.MAGIC_MIME_TYPE) as m:
... m.id_filename(’setup.py’)
...
’text/x-python’

Similarily, MAGIC_MIME_ENCODING can be passed to return the encoding type.

>>> with magic.Magic(flags=magic.MAGIC_MIME_ENCODING) as m:
... m.id_filename(’setup.py’)
...
’us-ascii’

2.1.4 Memory management

The libmagic library allocates memory for its own use outside that Python. This memory needs to be released when
a magic.Magic instance is no longer needed. The preferred way to doing this is to explicitly call the close()
method or use the with statement, as described above.

Starting with version 1.4 magic.Magic this memory will be automatically cleaned up when the instance is garbage
collected. However, unlike CPython, some Python interpreters such as PyPy, Jython and IronPython do not have
deterministic garbage collection. Because of this, filemagic will issue a warning if it automatically cleans up resources.

2.1.5 Unicode and filemagic

On both Python2 and Python3, magic.Magic‘s methods will encode any unicode objects (the default string type
for Python3) to byte strings before being passed to libmagic. On Python3, returned strings will be decoded to uni-
code using the default encoding type. The user should not be concerned whether unicode or bytes are passed to

6 Chapter 2. Table of Contents

http://pypy.org
http://jython.org
http://ironpython.net

filemagic Documentation, Release 1.6

magic.Magicmethods. However, the user will need to be aware that returned strings are always unicode on Python3
and byte strings on Python2.

2.1.6 Reporting issues

The source code for filemagic is hosted on Github. Problems can be reported using Github’s issues tracking system.

filemagic has been tested against libmagic 5.11. Continuous integration is provided by Travis CI. The current build
status is .

2.2 Command Line Invocation

filemagic can be invoked from the command line by running the magic.command module as a script. Pass -h or
--help to print usage information.

$ python -m magic.command --help
Usage: python -m magic [options] file ...

Options:
-h, --help show this help message and exit
-m PATHS, --magic=PATHS

A colon separated list of magic files to use
--json Format output in JSON

One or more files can be passed to be identified. The textual description, mimetype and encoding type will be printed
beneath each file’s name.:

$ python -m magic.command setup.py
setup.py

Python script, ASCII text executable
text/x-python
us-ascii

The output can also be rendered in machine parseable JSON instead of the simple textual description of above..

$ python -m magic.command --json setup.py
{

"setup.py": {
"textual": "Python script, ASCII text executable",
"mimetype": "text/x-python",
"encoding": "us-ascii"

}
}

The magic.command module is not intended to be a replacement for the file command.

2.3 The filemagic API

Importing the magic module provides access to all filemagic primitives. Most importantly the Magic class.

2.3.1 Exceptions

If something goes with libmagic, an exception will be raised.

2.2. Command Line Invocation 7

https://github.com/aliles/filemagic
https://github.com/aliles/filemagic/issues
http://travis-ci.org
http://travis-ci.org/#!/aliles/filemagic
http://en.wikipedia.org/wiki/JSON

filemagic Documentation, Release 1.6

exception magic.api.MagicError(errno, error)
errno is the numerical error code returned by libmagic. error is the textual description of that error code, as
supplied by libmagic.

MagicError inherits from EnvironmentError.

2.3.2 Classes

The Magic class supports context managers, meaning it can be used with the with statement. Using the with
statement is the recommended usage as failing to call close() will leak resources. See Usage for guidance.

class magic.Magic([paths, flags])
Instances of this class provide access to libmagics‘s file identification capabilities. Multiple instances may exist,
each instance is independant from the others.

To supply a custom list of magic database files instead of letting libmagic search the default paths, supply a
list of filenames using the paths argument. These filenames may be unicode string as described in Memory
management.

By default flags is magic.MAGIC_MIME_TYPE which requests default behaviour from libmagic. This be-
haviour can be controlled by passing alternative Constants for flags.

id_filename(filename)
Identify a file from a given filename. The file will be opened by libmagic, reading sufficient contents to
complete the identification.

id_buffer(buffer)
Identify a file from the contents of a string or buffer.

close()
Release any resources held by libmagic. This will be called automatically when a context manager exists.

list()
Prints a list of magic entries to standard out. There is no return value. It’s mostly intended for debugging.

consistent
This property will be True if the magic database files loaded by libmagic are consistent.

This class encapsulates the low level ctypes api from magic.api that interfaces directly with libmagic. It’s not
expected that the user would want to do this.

If you do not know if libmagic is available, refer to the Installation section of the guide.

2.3.3 Constants

magic.MAGIC_NONE
Default flag for magic.Magic that requests default behaviour from libmagic.

magic.MAGIC_MIME_TYPE
Supply to magic.Magic constructor to return mime type instead of textual description.

magic.MAGIC_MIME_ENCODING
Supply to magic.Magic constructor to return mime encoding instead of textual description.

8 Chapter 2. Table of Contents

http://docs.python.org/library/stdtypes.html#context-manager-types

CHAPTER 3

Issues

If you encounter problems, please refer to Reporting issues from the guide.

9

	Features
	Table of Contents
	Guide to using filemagic
	Command Line Invocation
	The filemagic API

	Issues

